Nonlinear State Space Estimation with Neural Networks and the Em Algorithm

نویسندگان

  • JFG de Freitas
  • M Niranjan
چکیده

In this paper, we derive an EM algorithm for nonlinear state space models. We use it to estimate jointly the neural network weights, the model uncertainty and the noise in the data. In the E-step we apply a forward-backward Rauch-Tung-Striebel smoother to compute the network weights. For the M-step, we derive expressions to compute the model uncertainty and the measurement noise. We nd that the method is intrinsically very powerful, simple, elegant and stable. i

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

The Em Algorithm and Neural Networks for Nonlinear State Space Estimation

In this paper, we derive an EM algorithm for nonlinear state space models. We use it to estimate jointly the neural network weights, the model uncertainty and the noise in the data. In the E-step we apply a forward-backward Rauch-Tung-Striebel smoother to compute the network weights. For the M-step, we derive expressions to compute the model uncertainty and the measurement noise. We nd that the...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Dynamical Learning with the Em Algorithm for Neural Networks

In this paper, we derive an EM algorithm for nonlinear state space models. We use it to estimate jointly the neural network weights, the model uncertainty and the noise in the data. In the E-step we apply a forward-backward Rauch-Tung-Striebel smoother to compute the network weights. For the M-step, we derive expressions to compute the model uncertainty and the measurement noise. We nd that the...

متن کامل

State Estimation and Control of Nonlinear Process Using Neural Networks

This paper considers the use of neural networks for non-linear state estimation, identification and control of non-linear processes. The non-linear identification is using feed-forward neural networks as a useful mathematical tool to build a model between the input and the output of a non-linear process. In this paper we consider the possibility of on-line state estimation of the actual paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999